DE-4000 SCRIPTING REFERENCE MANUAL
DE-4000 Series Configurable Safety Shutdown and Control System

altronic

B Admin § ..

@ [

Dashboarg

E18 B mon Mar g 2020 D 4:38 py

°rmal




altronic

This manual contains information on the operation and configuration of a DE-4000 Safety Shutdown and
Control System. This manual supplements the DE-4000 Safety Shutdown and Control System Installation
Instructions, Form DE-4000 II.

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

Table of Contents

T USSP PP UPPPRTUPRPUPPR 1
PO TP PPPRPTPPPTN 1
C PO U PR PPPRPPPPRTN 2
PP TP PP PP PP PR PPPRON 2
LT PO T TP P TP PPUP T UPUPPPPPIN 2

DEZ000 LU SCIIPE AP ittt e e e e skt e e e e e e s bt e et e e e s e sbb e e e e e e e nnbb e e e e e e e annreeeeas 2

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

Scripting Reference Manual DE-4000 Series Configurable Safety Shutdown and Control System Form
DE-4000 SRM 06-20

DE-4000 SCRIPTING REFERENCE MANUAL

One overarching capability that allows a bridge to gap the standard needs of everyday systems and the
customer needs of innovation is scripting. A scripting language, cleverly named Lua, is embedded into
the DE-4000 system. It operates as a script mainly meaning that it does not need additional tools to
convert the “code” into machine language. It also is looked at and corrected for errors every time the
script runs. Therefore it is an “interpreted” language and runs all of the time when you ask it. Lua comes
with a background of being robust, fast, and geared towards embedded applications, with a proven track
record in the gaming industry. For the DE-4000 system it is small and fits in the memory we have
available, holds a lot of power, and keeps it simple for writing in the language. All information regarding
the Lua scripting language is located at https://Lua.org Using the Lua engine as an embedded tool allows
for taking advantage of a full architecture and standard at your fingertips. Within the language there are
all of the normal attributes to programming such as functions, variables, statements, expressions etc. All
of this reference material can be found at https://lua.org/ manual/5.3/ For getting started and using a
guided reference, there are several editions of “Programming in Lua” available. Most recent editions are
a paid for product that come in paper back or ebook form. While testing out Lua and becoming familiar, a
free first edition is available and covers a lot of learning needs to get comfortable with the language. It
can be located at https://www.lua.org/pil/contents.html. A major advantage to using Lua is its inherent
ability to allow custom functions. While all normal functions and calls are published, there is the ability to
add new functions in the DE-4000 firmware. Once new functions are defined and have calls to their
internal properties, they then can be published for the user. This includes functions such as our flexible
Modbus table and talking with various terminal boards linked in the system. Below is the start to the list
of Altronic based functions. As functionality and features come to life through new ideas, this document
will continually get updated with the latest scripts that we make available.

GETTING STARTED WITH DE-4000 SCRIPTS Basic Scripting on DE-4000

1.

Begin on Dashboard on DE-4000 system environment

2.

Choose “Global” from menu on left side of screen

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022


https://Lua.org
https://lua.org/
https://www.lua.org/pil/contents.html

altronic

3.

In the Sub-Menu on the Left side select “Scripts”

4.

Select one of the page icons under one of the 4 script options to open editor

5.

Scripting can be entered into the editor.

DE4000 Lua Script API

create_param("index",default,"catergory","description")

creates a user configurable parameter

e parameter is stored as index,

default value(If not changed by user) is default

parameters will be grouped on the Global/Params page by category
e description is text to describe the parameter to the user

Example:

create param("NumEngCyl",68,"Engine Params", "Num. of Engine Cylinders"

get_channel_val(terminal,channel)

e returns current value of analog input channel on terminal module terminal
e return value type is numeric

Example:

sp = get channel val(1l,5

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

reads value of Suction Pressure from Terminal Module #1 , Input #5

get_gbl("index",default)

e returns global config setting stored under index or returns default if not defined
note: get gbl is used to retrieve global CONFIGURATION settings that are typically set when the
system is configured and do not change as the system is running. If you want to set and retrieve

global STATUS variables use the get sGbl() and set_sGbl() functions >If you want to create and
read virtual channels use the set sVirt() and get sVirt() functions.

Example:

nt = get gbl("NumTerm", 1

gets the number of terminal boards installed in the system

get_param("index")
e return either the default value or the user configured value of the parameter index

Example:
get param("NumEngCyl"

>gets the configured parameter for number of engine cylinders

get_rpm(channel)

e reads the RPM input channel in units of revolutions per minute

note: valid channel numbers are 1 - 10(2 channels per board, up to 5 terminal boards)

Each Terminal Module has 2 RPM inputs (RPM1 and RPM2)

e Terminal Module #1 RPM channels are 1,2
e Terminal Module #2 RPM channels are 3,4

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

e Terminal Module #3 RPM channels are 5,6
e Terminal Module #4 RPM channels are 7,8
e Terminal Module #5 RPM channels are 9,10

Example:

engineRPM = get rpm(1
turboRPM = get rpm(6

Read RPM1 channel from terminal module #1 and read RPM2 channel from Terminal module #3

get_sGbl("index", default)

e If index is defined in the global status table then it returns the value associated with index
e If index is not defined and optional default is provided then returns default

>note: It is recommended to always provide a default value when using this function

Example:

cp = get sGbl("calculatedPressure",0

get the previously stored value "calculatedPressure", Returns 0 if not found.

get_state()
e returns the current engine state(possible values currently 0 - 10)

Example:

engineState - get state
engineState > 7
set timer("WarmupTimer",6 1000

get_sVirt("index")

¢ returns the value of virtual channel index or returns default if the virtual channel does not exist.

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

Example:

tl = get sGbl("timeLimit"

et get sVirt("ElapsedTime",60
et > tl
set sGbl("timeExceeded", true

set sGbl("timeExceeded", false

>Gets the value of virtual channel ElapsedTime and set value of status global "timeExceeded" if
ElapsedTime is greater than status global "timeLimit"

get_time()
¢ returns the UNIX "epoch" time (Defined as the number of seconds elapsed since Jan 1, 1970)

Example:

startTime = get sGbl("startTime", 0
startTime 0
currentTime = get time
startTime = currentTime
set sGbl("startTime", currentTime

et = get time startTime
set sVirt("ElapsedTime", et

>Stores current time if first time through, otherwise calculate elapsed time

get_timer("index")

e returns 1 or 2 values

e First return value(Boolean) is true if timer is active(counting down) or false if timer is expired or
has not been set yet

e Second return value is the number of seconds remaining or -1 if timer is not active or has not been
set yet

Example:

not get timer("myTimer"
set sGbl("timedOut", true

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

set sGbl("timedOut", false

if timer is expired, then set global status "timedOut" to true

local active,remaining = get timer("myTimer")
if not active then
set sVirt("timeRemaining", "Expired")
else
set sVirt("timeRemaining", remaining)
end

getStateLabel(state)
e return the label for the engine state corresponding to the parameter state

Example:

statelLabel = getStatelLabel(get state
active, remaining = get timer("myTimer"
remaining > 0
statelLabel StatelLabel.." ". . remaining

set sVirt("Countdown",6 statelLabel

set_sGbl("index",value)

e store value in the global status table under index
¢ value can be a number or string but if storing a boolean use the tostring() function

Example:

mpe = false

sp = get channel val(1l,5
sp > 15
mpe = true

set sGbl("minPressureExceeded", tostring(mpe

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022




altronic

store boolean value minPressureExceeded

set_sVirt("index",value)

e sets a virtual status channel with channel name index

Note: Once you create a virtual channel, you can add that channel to the dashboard using the
channel name index

Example:
sp = get channel val(l,5) --suction pressure
dp = get channel val(l,6) --discharge pressure

diffPress = dp - sp
set sVirt("SuctDischDiff",diffPress

calculate the differential between suction and discharge pressure and assign to virtual channel

set_timer("index",secs)
¢ activate timer index and set countdown time to secs

Example:

set timer("myTimer",h 300

create timer myTimer and start countdown time to 300 seconds

From:
https://altronic.a2hosted.com/ - Documentation Wiki

Permanent link: ;
https://altronic.a2hosted.com/doku.php?id=documents:de4000:de4000script&rev=1642623950 ==

Last update: 2022/01/19 15:25

DE-4000 OCM 02-22
All rights reserved © ALTRONIC, LLC 2022



https://altronic.a2hosted.com/
https://altronic.a2hosted.com/doku.php?id=documents:de4000:de4000script&rev=1642623950

	Table of Contents
	1.
	2.
	3.
	4.
	5.
	DE4000 Lua Script API
	create_param("index",default,"catergory","description")
	get_channel_val(terminal,channel)
	get_gbl("index",default)
	get_param("index")
	get_rpm(channel)
	get_sGbl("index", default)
	get_state()
	get_sVirt("index")
	get_time()
	get_timer("index")
	getStateLabel(state)
	set_sGbl("index",value)
	set_sVirt("index",value)
	set_timer("index",secs)




